
A0-AI03 099 KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/6 9/2
RESEARCH IN FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DEVELOPME--ETC CU)

APR 76 P S FISHER, F .J MARYANSKI DAA629-76-B-RI0S

UNCLASSIFIED CS-76-11 NL

ELimEE-F

AIR M I CS Army Institute tor Research in 3 Calculator Bldg.
Management Information and GA Institute of Technology
Computer Science Atlanta, GA 30332

CI Technical Report

RESEARCH IN FUNCTIONALLY
DISTRIBUTED COMPUTER

SYSTE vS DEVELOPMENT

Kansas State University

Virgil Wallentine

Principal Investigator

Approved for public release; distribution unlimited

\/nlE)M
A P INIcompuLrER EASED DISTRIBUTED

DATA EASE SYSTEM

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

... .. . -',... " . -.. -:r V
L

'

UNCI.ASSTI~FIFj

REPORT DOC~mENTATIO4 PAGE ______ 1,4, ("

_____________________ 2 oWTAcSINN RLCIPILNT'S LAI AL01, ?NUMIILk

"I ,~ NICOMPUTERAASED D STRIBUTED DATA #ASE rei

.2.-- -. G -ibENRANT NUMBER(.)

-. ~Virgil E.lWallentine 1 . ID 6 2---10
9. FOUIO01*tATON NAME AND ADDRESS 10. PROG RAM ELEMENT, PROJECT. TASK

AREA & WORK UNIT NUMBERS
Kansas State University
Department of computer Science
Manhattan, KZS 66506

It. CONTROLLiNQ OFFICE NAME AND0 ADDRESS I-eta-

4. MONITCIRING AC.ENCY NAME A AOORESSfII d,It.,.aI 1-o ConIrollind OfI,**) IS. SECURITY CLASS. (.1 this -.p-1)

16. DISTRIBUTION STATEMENT lot this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (oftheN absrlact arttod'In Black 20. fI'diftttart 1- Report)

I$. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an orficial
Department of the Army position, unless so designated by other authorized
document.

19. KEY WORDS (..In*,,,or**d 1ncIrY-d Id-fl'II by block n..b.,)

1) B MS

20 ABST RACT 1 7r=1--, .~ .. I t en'.d Id-flIIv by block .- b,)

-over-

...................- I..............I..,..-.....I......1-.........

UNCIASSIVI ET
SECU141TV CLA .,HI CATIQN OF THIS PA(.E 4 Wh" 0-t. FMI.d)

r -ABSTRACT-

This paper described a data base management system
under development 'at Kansas State University, intended for
use in a network composed primarily of minicomputers. The
report presents a description of the computers forming the
network and their intercomputer commiunication system. The
data base management system is a network type as specified
by CODASYL. An extension of -a CODASYL-type DBMS to (
multicomputer configurations is presented and several DBMS
network topologies are discussed, We then conclude with a
discussion of a completely-distributed data base network,

UNCLASSIFIED

$ECUINITY CLASSIFICASOW OF T"IS PAGE(lfl" DOI. &AOfM)

.-

A Minicomputer Based Distributed

Data Base System

April 1976

Technical Report #CS-76-ll

Fred J. Maryanski

Paul S. Fisher
Virgil E. Wallentine
Myron A. Calhoun

Computer Science Department
Kansas State University

Louis Sernovitz
United States Army Computer Systems Cosand

Ft. Belvoir, VA

IThe work report herein is supported by the U.S. Army

Pesc..r.)ftce Grant No. DAAD-29-76-G-0108

Abstract

This paper describes a data base management system undei
4 tvelopment

at Kansas State University, intended for use in a network composed primarily

of minicomputers. The report presents a description of the computers forming

the network and their inter-computer communication system. The data base

management system is a network type as specified by CODASYL. An extension

of a CODASYL-type DBMS to multicomputer configurations is presented and

several DBMS network topologies are discussed. We thei conclude with a

discussion of a completely aistributed data base netwo.-k.

- P0

1. Introduction

Many organizations have the need to expand their data processing power

and simultaneously increase their data accessibility. This paper presents

the results of research aimed at developing systems to satisfy that need. A

distributed data base management system residing on a network composed

mainly of minicomputers is under development by Kansas State University and

the U. S. Army Computer Systems Command. A distributed data base system provides

the capability for a user program to be entered on any machine in the system,

executed by another (or the same) processor, and access data on all secondary

storage devices attached to the network (provided security requirements are

met).

A distributed data base system of the form presented in this report

provides an economical and easily expandable data processing facility with

considerable flexibility and computational power.

II. Data Base Network

A. Hardware Configuration

The network which supports the distributed data base system is composed

of six computers manufactured by four different vendors. This heterogenous

blend of architectures requires that the data base and communication software

be portable. The software systems presented in this paper are designed to

be sufficiently general to allow a wide variety of different computers to

be incorporated into the network.

The present network configuration is depicted in Figure 1. The three

INTERDATA machines and the NOVA reside in the Computer Science Department of

Kansas State Univ" " These four local machines are all directly connected

via high speed links. The IBM 370/158 is located at the KSU Computing Center

and is accessed via a slow speed phone link. The PDP 11/70 is situated at

IBM

370/158

NOVA - - INTERDATA

2/10
71

INTERDAIN________

85 83

Figure 1

Network Configuration

-3-

Ft. Belvoir. VA (U. S. Army Computer System Command). The PDP 11/70 and

INTERDATA 8/32 communicate over conventional phone lines.

B. Inter-Machine Communication

Although the network consists of a heterogeneous blend of processors,

the means of communicating among the nodes is identical at the highest level

in all cases. The Inter-Computer Communication System (ICCS) acts as a

message system to route programs, dat4, and control information among machines

and tasks. A functional overview of ICCS is given in this report. A detailed

description can be obtained in reference (1]. ICCS performs the following

functions:

1. Synchronize task and processor,

2. Perform inter-process communication witich enables exchange of data

aai' control information between distributed tasks,

3. Manage message buffers,

4. Standardize the interface between application programs and service

programs (DBMS tasks) and,

5. Provide a uniform communication facility abstracted above but

implemented on standard connections.

Inter-task communications is performed by SEND and RECEIVE procedures.

The SEND procedure identifies the name and port within the target task

addressed by a TO-ID parameter. The RECEIVE procedure may either receive a

message from a task identified by a FROM-ID parameter or accept a message

using a first-come-first-serve discipline. The RECEIVE procedure can also

be notified if the task issuing the receive is to wait for the message or is

to proceed unto-dtionally.

The interaction of ICCS, communicating tasks on different machines, and

the operating systems of the machines is depicted in Figure 2. The task

originating the communication invokes ICCS with a sequence of fixed length

-4-

TASK I

INTERFACE

Processor 1

OPERATING SYSTEM

MESSAGE cBUFFERS

COMMUNICATION LINK

ICCS

MESSAGE BUFFERS

Processor 2
OPERATING SYSTEM

INTERFACE

TASK 2

Figure 2
Inter-Task Communication vLa ICCS

block messages which compose the data or control information to be transmitted.

The invocation is carried out be means of a subroutine call. The version of

ICCS residing on the transmitting processor either transmits the series of

buffers to the receiving machine via the communication links, or queues the

messages if it has insufficient buffer space available. The message is then

iransmitted to the receiving processor which is specified by the message

identifier. The transmission may be accomplished via direct links or by routing

through other processors. The message system on the receiving processor reads

the message into any available buffers. If no buffers are available the

message is queued. The contents of the buffer are then made available to the

task to which the message is directed.

When a task is to receive a message it issues a call to ICCS. If the

message is not contained in the ICCS buffers in that processor, the task can

specify either the wait or proceed option. If the wait option is indicated,

the task will suspend execution until the ICCS on its processor receives the

message. At this time the receiving task will be allowed to resume.

ICCS may exist in one of two forms depending upon the level of system

software that can be utilized. The Multi-Computer Communication System

(MCCS) is a version of the message control system intended to execute under

single task operating systems. The Inter-Task Communication System (ITCS) is

a multi-tasking version which executes on'a system providing efficient skeletal

inter-task communication facilities. MCCS has been implemented on the IBM

370 as a CMS machine under VM/370. Implementation details can be found in

(2]. ITCS is in execution on a NOVA 2/10 under RDOS. Specifications of ITCS

are given in (3].

ICCS has been developed to provide a generalized communication mechanism

for Intertask communication between distributed tasks. It can be adapted easily

to serve as the communication facility for a data base management system. In

-6-

a DBMS environment, data base function requests can be transmitted in one

direction and data and status sent in the other direction.

C. DBMS Specifications

The data base management system that is to be distributed functionally

.inong the network nodes is based upon the CODASYL data base specifications.

The DBMS encompasses virtually all of the features listed by the CODASYL

comittee as shown in Reference (4]. Complete language specifications for

this system are available in Reference (5].

The internal operation of a CODASYL DBMS is illustrated here by describing

the actions that occur when a DML statement is executed. More information

on the workings of a CODASYL DBMS can be found in [6-81. Figure 3 shows the

memory layout of the DBMS and the action sequence.

1. A DML command is encountered in the application program.

A call to the DBMS is then issued.

2. The DBMS analyzes the call and verifies the request against the

object versions of the schema and sub-schema.

3. The contents of System Buffers are checked.

4. If necessary, the DBMS requests that the operating system perform

a physical I/O transfer.

5. The operating system controls the I/0 operation of 6.

6. Data is transferred between secondary storage and system buffers

by the operating system.

7. The DBMS transfers data between system buffers and the User Working

Area (UWA) as required.

8. The DbL' ir..v aes status information on the recently completed operation.

9. The data in the UWA may be operated upon in asy manner by the appli-

cation program.

-7-

PRIMARY STORAGE

OPERATING SYSTEM

SECONDARY/

4 SCHEMA SUB-SCHEMA-1 SUB-

5 (OBJECr VERSION) (OBJECT VERSION) SCHEMA-
N

2 L N

DATA BASE USER-PROGRAM-i USER-PROGRAM-N
MANAGE-

MENT
SYSTEM

1

DATA BASE 3

8 SYSTEM
LOCATIONS

4 9 SYSTEM

SYSTEM LOCATIONS

UFFERS

6 USER-WORKING USER-WORKING
I AREA AREA

Figure 3
DBMS Memory Layout

and Operation
, Control flow

Data flow

-8-

III. Distributed Data Base Systems

A. Back-End DBMS

A CODASYL DBMS as originally conceived was targeted for a single computer.

However, a DBMS represents a significant drain on system resources due to the

large amounts of computational activity and the sizeable number of 1/0 opera-

-:ions coupled with the operating system overhead introduced by the requisite

task switches. Because of the high-level nature of the DML, a single DML

statement can result in several secondary storage accesses, and hence many

task switches are inherent in a centralized DBMS. A back-end DBMS was con-

ceived by Canaday, et al. [(] to relieve the processor of a portion of its

DBMS workload and overhead by incorporating a minicomputer dedicated to per-

forming DBMS functions into the configuration.

The basic method of operation of a back-end DBMS is to restrict the

physical access to the data base to the back-end machine. The application

program is executed on the original (or host) computer. When a DML statement

ts encountered in an application program, a message is transmitted to the

back-end computer via a communication system such as the ICCS described in

Section II.B. A task on the back-end computer then performs the DML function,

including any requisite I/O operations on the data base. In effect, the

back-end processor acts as a sophisticated data base I/0 device for the host

machine.

The applicability of the back-end DBM4S concept to production data

processing systems has been investigated in (10]. In that study it was shown

tcat the incorporation of a back-end machine into a DBMS system reduces task

switching overh,CL on tne host CPU, decreases the primary memory requirements

for the DBMS and applications in the host, and provides for an overall increase

in the availability of system resources.

i1M

-9-

In order to realize a back-end DBMS, the data base software shown in

Figure 2 must be distributed between the host and back-end computers. The

back-end configuration is shown in Figure 4. Each M(L results in exchange

of information between the two machines. The DBMS software in the host becomes

minimal, consisting only of interface routines between the application program

and the message system.

The back-end DBMS unloads substantial amount of processing requirement

from the host to the back-end machine. This fact frees the host machine for

additional processing. If this processing is dedicated to additional DBMS

applications, the benefits of concurrent operation of the host and back-end

CPU's can be repeated.

Inter-machine communication is accomplished in basically the following

way. Whenever a DML statement results in a transmission to the back-end, an

interface routine formats a message which indicates the action that the back-

end must take in order to complete the DM1. function. The message is trans-

mitted by the ICCS to the back-end. The back-end computer also contains a

routine that serves as an intermediary between ICCS and the DBMS routines

residing on the back-end. This routine will decode the message and activate

the appropriate DBMS function which may result in one or more I/O operations.

When the DHL function has been completed, data and/or status information is

returned to the application program in the host machine. Figure 5 indicates

the flow of messages in the back-end DBMS.

B. Multiple Machine Configurations

Thus far, the discussion has considered only a two-computer data base

network. V c,,;- ¢is configuration can be extended in several ways. An

initial step in this direction is to incorporate several back-end machines

into the system. In this environment the host serves as the central element

of the network. Any data base access request originated by the host computer

-10-

USER PROGRAM N

ASys DBMS 0UWA LOC. . r.

• E

USER PROGRAM R yR S

DMSYS. DaMS Inter- I E HOSTUWLAA LOCI I are m

BUF",RS

I C C S.11
ICCS

INTERFACE 0 S
P Y

DBMS E S
R T

SUB SUB DML DML A E BACK-END
S s S TASK TASK T M
C C C I K I
H IH H N.
E E E G
M M M
A A A

I K BUFFERS

U.~ B3AS E SECONDARY~STORAGE

Figure 4

Back-end Software Distribution

\ , J

HOST CPU

USER PROGRAM

DBMS DML Overition

INTERFACE
Data and/or status

OPERATING SYSTEM inorr-etion

IcCS

ICC

D

INTERFACE 0 S T R SECONDARYI I P YA
[DBMS J E S

L R T
|DML TASK A E '

" T MB
A

N
GE

BACK-END CPU

Figure 5
Information Flow In Back-End DBMS

16-

-12-

must be targeted to the back-end machine connected to the appropriate data

base. As in all network DBMS topologies, intermachine communication occurs via

messages transmitted using the ICCS. Figure 6 illustrates a multiple back-end

configuration.

The basic back-end system can also be expanded to allow several host

machines to access a single back-end. In this enviroment, the back-end

machine controls the access to a centralized data base which may be referenced

for any of the host machines. Figure 7 depicts a multiple host configuration.

All prior discussions of the back-end machine have assumed that its

sole function is data base management. One of the basic objectives of a distri-

buted DBMS is efficient utilization of all system resources. It is possible

that a CPU totally dedicated to the DBMS function could have considerable

periods of inactivity. Assuming that the back-end computer has multiprogramming

capabilities, tasks other than DBMS functions could be performed upon that

machine. These additional tasks could include data base application programs.

A machine capable of serving as both a host and back-emd is known as a bi-

functional machine. In a network with back-end, host and bi-functional machines

(such as that in Figure 8) the only restriction as to the function of a

processor is its physical connection to secondary storage. A bi-functional

processor does not require any special software other than the DBMS and the

ICCS code. If an application program on a bi-functional machine has access

to the data base controlled by that machine, messages are transmitted to and

from the back-end DBMS code on the same machine via the ICCS of that machine.

This mode of operation naturally introduces overhead with respect to a single

processor DB:.S II..,ver, the benefits to be realized in terms of generality

of function and expanded data access make such a configuration highly desirable.

The goal of a distributed computing system is to balance the workload of

the component computing elements while maximizing access and throughput. In a

-13-

BASE BASE BASE

1 2 ... K

Figure 6
Multiple Ba ck-End Coraziguration

-14-

HOST HOST OS
2 2

BACK-EN

DATA BASE

Figure 7..
Multiple Host Configuration

Lt

HOST 1O0T
M

BACK-

F FUNC

DATA BASE DATA BASE DATA BASE
2

Figure
DMBS Network with Bi-Functional Machines

-16-

distributed DBMS network, each node is a bi-functional machine. Each node may

communicate with every node in the system. (Although this communication may be

realized by forwarding through intervening nodes.) Figure 9 displays a typical

distributed DBMS. In such a configuration, an application program may be sub-

mitted at one node, executed at another, and access the data bases of other nodes

in the network.

Problems such as data accessibility and integrity, transparency of data

location, contention and deadlock, communication and buffer management for a

distributed DBMS are considered in the references [11-121.

IV. Conclusion

In summary this paper provides a description of a flexible and powerful

network for data base management. The report describes the mini-computer

configuration upon which the system resides, the inter-machine communication

facilities, a description of the operation of the data base management system

and discussion of various network configurations under which the DBMS can

operate.

This report presents a distributed data base network as an economical,

general, and practical method of enhancing (or expanding) a data processing

facility.

1.

-17-

DATA BASE I DATA BASE 2

BI-FUNCT BI-FUNCT

2

8I-FUNCT BI-FUNCT
43 LT

DATA BASE DATA BASE
4 3

Figure 9

Distributed DBMS

•.

'I

I

References

1. Wallentine, V.E. and Maryanski, F.J., Implementation of a Distributed Data
Base System, TR-CS-11-75, Computer Science Dept., Kansas State University,
Manhattan, Kansas 66506, Nov., 1975.

2. Fox, S., A Multi-Computer Communication System, M.S. Report, Computer Science
Dept., Kansas State University, Manhattan, Kansas 66506, Jan. 1976.

3. Wallentine, V.E., et al., On the Implementation of a Back-end Data Base
Management System, TR-CS-09-75, Computer Science Dept., Kansas State
University, Manhattan, Kansas 66506, Sept., 1975.

4. CODASYL COBOL 1973 Journal of Development, Dept. of Supply and Services,
Technical Service Branch, Ottawa, Ontario (revisions to June, 1975).

5. Maryanski, F.J. and Fisher, P.S., Language Specifications for a Distributed
Data Base Management System, Technical Report, Computer Science Dept.,
Kansas State University, May, 1976.

6. Date, C.J., Introduction to Data Base Management, Adison Wesley, Reading,
Mass., 1975. r

7. Martin, J., Computer Data Base Organization, Prentice-Hall, Englewood
Cliffs, N.J., 1975.

8. Warren, T., Feature Analysis of CODASYL Data Base Management Systems, AD-AO14
972, NTIS, Dept. of Commerce, Springfield, VA, June, 1975.

9. Canaday, R.H., et al., A Back-end Computer for Data Base Management, CACH 17,
10, Oct., 1974, pp. 575-582.

10. Maryanski, F., Fisher, P., and Wallentine, V., Feasibility of Back-End
Minicomputers, USACSC Grant No. DAHCO4-75-6-0137, U.S. Army Computer Systems
Command, Ft. Belvoir, VA 22060, June, 1975.

11. Maryanski, F.J., Fisher, P.S. and Wallentine, V.E., Distributed Data Base
Management Systems, Technical Report, Computer Science Dept., Kansas State
University, Manhattan, KS 66506 (in prep.).

12. Maryanski, F.J. and Wallentine, V.E., Resource Sharing in a Distributed
Data Base Management System, Technical Report, Computer Science Dept.,
Kansas State University, Manhattan, Kansas 66506 (in prep.).

DATE

